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The construction of optimal player strategies defining situations of the saddle~point type
in certain differential games is described, The approach used to investigate the differ-
ential games under consideration is based on [1], where we introduced the notions

of mixed player strategies and provided an alternative which holds for this class of stra-
tegies, The contents of the present paper are related to those of [2-—5],

1, Let the motion of a controlled system be described by an equation of the form
dz | dt = [ (¢, z, u, V), z [ty = x, (1.1)

Here x is an n-dimensional phase vector and f (¢, x, u, v) is a continuous vector
function which satisfies Lipschitz' condition in Z; & and v are the vector controlling
forces at the disposal of the first and second player, respectively, We assume that the
choice of controls « apd v is subject to restrictions of the form

uweE P, veQ (1.2)

where P and Q are closed bounded sets in the corresponding vector spaces,

The games problems (differential games) to be considered in the present paper are as
follows,

Problem 1,1. Letsome closed sets N and G be given in the vector space p =
= {t, }. The first player who chooses the control u seeks to effect system motion (1,1)
in such a way that for any permissible behavior of his opponent the point p [t] ={¢,z [t]}
arrives at the set NV in the shortest time, and, moreover, the phase restriction p [fle=a
holds throughout the time that the point p [Z] travels from the initial state pgy ==
= {to, ¥o} tothe set N, The second player strives to achieve the opposite aim, In
other words, he seeks to effect a system motion (1,1) in such a way that either the phase
restriction p [t] & G is violated before the point p [¢] arrives at the set IV, or the
point p [¢] does not reach the set NV within the maximum possible time interval [¢,, U].
The payoff in this differential game is defined as follows:

_{ Ba(-D—t if pll={tzt}EG H<t<OE[:])

. (1.3)
~0 if plt]=G for some t, E[t, ¥z [-]]

Here & (z [-]) denotes the instant when the inclusion {¢, z [¢]} & .V first occurs
for some motion z [#] ; when the point p [f] = (¢, z [t]} does not arrive at N for
t >ty weset ¥ (z[:]) = oo.

In stating this problem we assume that each of the players knows the realized game
position p |#] = {¢, x [t]} at each instant £ Z> ¢,, but does not know the control cho-
sen by his opponent at this instant and subsequent instants, We shall seek the solution of
this problem (which consists in determining the strategies yielding a saddle point) in the
class of mixed strategies introduced in [1].

Problem 1.2, Letthe motion of the controlled system be described by Eq, (1.1),
and let some closed set V be specified in the vector space p = {f, }, The payoff is
defined by the equation
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Y= max, @t xltl)  for e < < min {7, O (D)) (4.4

where @ (¢, 2) is a given continuous function, 7' is some finite instant which limits the
duration of the game, and ¥ (. [-]), as above, is the instant when the point p [1] first
reaches .V, We assume that the first player seeks to minimize y (1.4); the second player,
on the contrary, seeks to maximize this quantity, The character of the information to
which the players have access is the same as in the previous differential game,
As above, the problem consists in determining the player strategies which produce a
saddle point,
Problem 1,3, This problem differs from the previous one only in the fact that
the payoff is defined by the relation
powax, @t o) for gyt Ol if ST -
= - it dE-)H>T (1.5}
In this game the first player must bring the point p [¢] to the set ¥ not later than at
the instant £ : 7' otherwise he loses the game,
Problem 1,4, The payoff in our last differential game is defined by the equation

&4

v 29N\ e (1.6)

Here ¢ (¢, z) and W (f. z) are given continuous functions which are defined for all
x and for 1= 1t,. T1, where T == ¢, is some finite instant; { — 8 (& !-1) is the
time of initial arrival of the point p [¢| at the given closed set V. The first player, who
is free to choose the control i, seeks to minimize Y (1.6); the second player seeks to
maximize it, If the point p [{] does not reach IV for £ & [7,, 7] we set y == o0 and
assume that the first player has lost the game, The character of the information made
available to the players is the same as in the previous problems, It is clear that if the
set NV is defined as a hyperplane ¢t = & == const in the vector space p - {f, r} the
games problem just described hecomes a differential game with a fixed instant of ter-
mination ¢ = O

In solving the four game problems just stated we shall use the definitions and notation
introduced in [1], Let us state the results of [ 1] which form the basis of the discussion to
follow,

tet W (v, 8) be the set of points w which satisfy the following condition; whatever
the mixed second-player strategy V = V (¢, x) there exists a motion x [t] ~ z [/;
T, w. Ur, VI such that the point p [t} = {¢, x [#]} arrives at the set M not later
than at the instant ¢ = { and the phase restriction p [t] & D is fulfilled for ¢, <<
< t<< O (xl-1; M). Bere M and ) are some closed sets in the vector space p ==
= {t, x}; the symbol ¥ {z [-1; M) denotes the instant when the condition
{t, x [ﬁ} & M s first fulfilled for some motion z |£].

Theorem 1.1, I z,& W (§,. 1), then the mixed first-player strategy [J(® =
= [U® (¢, z) extremal to the system of sets W (£, ¥) (¢, << f <Z ) for any motion
xtl =z [t tg x4, U@, Vrl ensures fulfillment of the relations

Fll M<y plleED fo te<t<W (@l M) (1.7)

If x, & W (£, U),then there exists an & >> 0 and a mixed second-player strategy
Vi = Vi (£, 2) such that the following condition is fulfilled for any motion
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x(t] =z [t; ty, 24, Ur, Vyl:
pltl = {t, z 1} & Ms  for t, < t<min {J, v*(z [-1; D)} (1.8)

We recall that the symbol M* denotes the closed &-neighborhood of the set M, and
¢ (x [-1; D)is the instant when the distance from the point p [t] = {¢, z [{]} to the
set [ is first equal to the number & > 0.

Let W, (t, U) be the set of points w satisfying the following condition:whatever the
mixed first-player strategy U == U (¢, x), there exists a motion z [t] = z [#; 7, w,
U, V7 | for which the following relation holds:

pltl = {t, 2t} =D for v<t<min {0, 9 (z[.}; M)}

Theorem 1.2. If x,& W, (t,, ¥), then the mixed second-player strategy
V© = V) (t, x) extremal to the system of sets W, (£, 9) (t, << t << 9) ensures
that the following condition is fulfilled for any motion x [¢] = x [#; ¢,, z,. Ur, V©]:

plth =A{t, 2} =D for t, <t<min {& 9 (z[-1; M)} (1.9

If zy €& Wy (45, 0), then there exists an ¢ > 0 and a mixed first-player strategy
U, = U, (t, x) such that the following conditions are fulfilled for any motion
Z[t] = z [t; ty, 4, Uy, Vrl:

(2], D)<Y, pltl = {¢t, z 8]} & M® for t, <<t <1 (z[-1; D) (1.10)

Note 1,1, We recall that Theorems 1.1 and 1.2 remain valid if we interchange
the first and second players in the definitions of the sets W (¢, ¥) and W (¢, 0) and
in the statements of these theorems,

2, In this section we consider a differential guidance game with phase restriction, i. e.
our Game Problem 1,1, Let W®(t, #) (¢, < T < V) be a set of points satisfying
the following requirement; whatever the mixed second-player strategy V =: V (¢, z),
there exists a motion z [¢] = z [¢; v, w, Ur, VI such that the following conditions
are fulfilled;

V) =90, )<Y, {t, z[tl} e G fo v<t<<O(z[-])
We assume that tliere exists at least one value of the parameter ¥ for which the inclu-
sion x, & WO (¢, U)holds, Otherwise (as will be shown below) there is no first-
player strategy which guarantees completion of the differential guidance game with
phase restriction in a finite time, We denote by {}° the number defined by the equation
0° = inf {0 : 2, & WD (¢, 0)} (2.1)
i.e, U°is the lower bound of all numbers © for which the condition z, = WM(¢,, )
holds, We can show that the following relation is valid:
zy & WL, 9°) (2.2)
Clearly, the validity of inclusion (2, 2) can be inferred from the following lemma,
Lemma 2,1, Letthe number sequence (%) and point sequence Wy, satisfy the

conditions NG = 0F, woe W (t, 1(),(h-)) =12,
lim 9% = 9%, lim wy = w,
k—oo kE—c0

The following inclusion then holds:
Wy & WO (1, §%) (2.3)
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Proof, By the definition of the set W® (r, %) inclusion (2, 3) must have the fol-
lowing meaning: whatever the mixed second-player strategy v ... V ({, z), there exists
a motion zy [t] = z lt; T, wy, Up, V] such that

PR e 6 for Tt <<O(ze VD (2.4)

£y 3

b (;r;.f-h <EG* {t, x,
(%) E SN S L V] 1 *

Thus, let ¥V =V {z, ¢} be an arbitrary mixed second-player strategy. Since w, & W
(T, ), there exists a motion zx [t] = z {#; T, wy, U1, V] which satisfies the condition

Or 02D <O, pilel = {8, ot} €6 for 1<t <Oy (2.5)
From the number sequence &, and vector function sequence py; 1} we cau choose
convergent subsequences

lim Oy, - &, <U%, lim (max | py; [¢]— P, 111 =0 (2.5}
00 im0 Tt By
Pie; U] oo (t zg [H) p. 1] = {t, 2. U]}

We note that the vector function z, {1} is one of the motions = {1 v, w,, U4, V] (see
[1}, Sect, 1 regarding the semicontinuity above with respect to inclusion of the system
of motions z |t; 7, w, U7,, V] in the variable ). Since the sets ¥ and G are closed,
expressions (2. H) and (2, 8) imply that the vector function p, 8] == {t, a1ty satisfies
the phase restriction p,lf} & G for T < t <($},; moreover, the inequality & (- b <<
{5 X holds, L e, condition (2, 4) holds for the motion r,li] ~ o I 1, wy Uy ¥,
lemma 2,1 bas heen proved,

we shall call the number {}°(2.1) the instant of positional absorption of the set V
under the phase restriction p £ (/. We have already shown that the instant of absorp-
tion 1° has the following property: for any { « 9° we have x, ¢& W (7,, 1), and
inclusion (2, 2) is fulfilled for U #°, By virtue of Theorem 1,1, where we set A .
= N, D) . (, inclusion (2,2) implies that the mixed first~player strategy (/&) -
= [J{t, ) extremal to the system of sets WD (f, °) (£, <) ¢ < U°) ensures that
the point p (] « {f. x {1} arrives at V with fulfillment of the phase restriction
p 1t} &= (¢ not later than at the instant £ -= {J°. On the other hand, for ¢ <A we
have 1y ¢ W0 (1,, U), so that (again by virtue of Theorem 1,1) we can say that there
exists a mixed second-player strategy 17, . - V7, (7, ), which ensures fulfillment of
condition (1, 8). This implies that the following theorem is valid,

Theeorem 2.1, Inthe game guidance problem with phase restriction whose payoff
}0

~r

7 is defined by Eq, {1, 3) there exists a game value wich is equal to #° — {,, where 1
is the instant of absorption defined by Eq, (2, 1). tlere the mixed first~player strategy
extremal to the system of sets 1 (¢, 9°) (£, =7 ¢ =7 (°) guarantees completion of
the game with a payoff which satisfies the inequality y << 1° - [, i,e, the strategy
{74¢ delivers the minimax of the payoff in the game under consideration, For any num-
ber {1 <17 there exists an + = ) and a mixed second-player strategy 17, (N

(¢, x; W, ) such that the following condition is fulfilled for any motion & {1} 4y, ry.
o Vle {t. o [} 7= N dor £ < £ <D min O, = (2 ] G)) (2.5%
Thus, the strategy ¥y Vg (4. 73 3, &) ensures completion of the game with a pay-
off which satisfies the inequality y =4 — ¢,.

we note that as the strategy 1V, Vg (4, 05 Uy ¢) we can take a mixed second-
player strategy extremal to the system of sets Wi (r. 07 ¢) (£, 7 T =7 1), where
the sets 11 (1, ©; #) are defined by the following condition: the point w belongs to



On the structure of game problems of dynamics 85

the set W (t, ¥; &) if and only if for any mixed first-player strategy U = U (¢, x)
there exists a motion z [fl =z [#; T, w, U, Vy] for which the following relation is

fulfilled: p({t, z[tl}; N)y>=e for t<t< min {¥, © (z[-]; &)}

The symbol p (p, N) denotes the distance from the point p to the set IV .
Fulfillment of condition (2, 7) for any motion

z [t] = z lt; ty, oo Ur, V]

where V(@ is the mixed second~player strategy extremal to the system of sets wd (t,
9; &) , follows from Theorem 1,2, in which the sets M and D are defined by the expres~

Sioms M={p:p( Q) =¢e}, D= {p:p(p, N)>¢)

3, In this section we consider the solution of Game Problems 1.2 and 1, 3, where the
payoff is defined by Egs, (1.4) and (1. 5), respectively, Let us introduce some new nota-
tion, Let 7 (c) and K (c) be closed sets in the vector space p == {f, 2} ; these sets
are defined as follows:

H(e) ={p:¢(f 2) >c} K()=1{p:og( a)<<c (3.1}

First let us turn to the solution of Problem 1.3, We introduce the sets W® (1, T; ¢)

(ty =< T << T) consisting of all the points w which satisfy the following condition: for

any mixed second-player strategy V = V (¢, z) there exists a motion z [¢] = z [f;
r, w, Uy, V] for which the following relations are fulfilled:

B([-)=0@[-; N)<LT, {4, zlt]} = K (0

for T<<t<<O(z[-]) (3.2)
We denote by ¢° the lower bound of all the numbers for which the inclusion
zo = W® (2, T; c (3.3)
holds. 0 & (to ’ )
Reasoning in the same way as we did in proving Lemma 2,1, we can show that the
inclusion Ty & WO (t,, T; ) {3.4)

holds ; here we must assume the existence of at least one ¢ <C oo for which condition
(3. 3) holds, Making use of Theorem 1.1, we can prove the following statement,

Theorem 3,1, Differential Game 1.3 in which the payoff is given by Eq. (1. 5)
has its value given by ¢® = inf {¢ : 2o EW® (¢, T; c)}. Here the mixed first-player
strategy [J() = [J (¢, z) extremal to the system of sets W@ (t, Tyc®) (4, <<t <
< T) guarantees completion of the game with a payoff which satisfies the inequality
y <2 ¢ ; in other words, U(®) is the minimax strategy, For any nuruber ¢ < ¢° there
exists an & > (O and a mixed second-player strategy V, = V, (¢, z; ¢, €) such that
for any motion x [t] = z [t; ¢, 24, Ur, V4l the following condition is satisfied:
p((t 21t} M>e for fo<t=min (T, 8@l H(@)) (5
where O (z [-]; H (c)) is the instant when the point p [#] = {t, z [{]} amives at
the set H (¢) for the first time, Thus, the strategy V', guarantees completion of the
game with a payoff which satisfies the inequality Y 2> ¢.

Proof. Since inclusion (3,4) is valid, the definition of the system of sets W' (¢, T;
e) {to <t < T) and Theorem 1.1, where we set

M= N, D = K (c®
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imply the following relations
P ELDST, (Lol EK ) for 64t < ([ ])

which are valid for any motion z [t] = « [t} to, z, T o1

The definition of the game payoff ¥ (1.5) and expressions (3, 1) imply that the extre~
mal strategy [/®) guarantees completion of the game with a payoff which satisfies the
inequality p < ¢°. The first statement of the theorem has been proved,

Let ¢ < ¢ ; then, by the definition of the number ¢ we have

ae W@, 77 o (3.6)

Let us suppose that the second statement of the theorem is not valid, and let V =V (z,
z) be an arbitrary mixed second-player strategy, Since (3, 5) does not hold, it follows
that for any ¢ > 0 there exists a motion z,[t] == z [#; tu, 7, I74, 1] and a number t* (¢)
such that the following conditions are fulfilled:

ey T, (% (e), x, UE*](- = N° (3.7)
@ (t, x 1t]) Ce for to Tt < t* (o)

Making use of the property of compactness in itself of the set of motions z [¢; #, z,
Up, V] (see [1],Sect, 1) and taking the limit ase — 0,we find from (3.7) that there
exists a motion x [t] == z |¢; to, 20, Uy, V] which satisfies conditions (3, 2) for T = .
Since V =V (¢, z) is an arbitrary second-player strategy, the inclusion zo & W®) (o, I
¢) holds for the point z. But this contradicts relation (3, 6), which in turn proves the
validity of the second statement of the theorem, Theorem 3,1 has been proved,

Wwe note that the strategy V, = V, (¢, x; ¢, &) can be defined as extremal to the
system of sets W’ (£, T'; ¢, €) (t, << t << T'). Here the sets W@ (xr, T; ¢, &)
must be defined as the collection of points w which satisfy the following condition: for
any mixed first-player strategy U/ = [J (t, ) there exists a motion z {t] = z [¢#; T,
w, U, Vrl for which the following condition is satisfied :

o({t, zltl}, N) > e for v<it<<min {7, 9 (x[-I; H(c))}

Fulfillment of condition (3, 5) for any motion
z{t] =zt t,, x5, Ug, VO]

where V{©) is a mixed second player strategy extremal to the system of sets Wf,?) (¢, 1%
¢, €), follows from Theorem 1,2, where we set M = H (¢), D = {p: p(p, N) == &}.
Now let us turn to Problem 1,2, It is easy to see that Game Problem 1,2 coincides
with Differential Game 1,3 if we add the hyperplane ¢ = 7 to the set V (the arrival

of the point p [¢] at this set coincides with the instant of termination of Game 1, 3).
Then for all motions x [¢] we have U (x [-]) < 7'. so that payoff (1. 4) coincides with
payoff (1. 5), Thus, Differential Game 1.2 is a particular case of Game Problem 1,3
considered above, We therefore omit discussing this game in detail, and merely state
the final result,

Let W (1, T: ¢) be the collection of pointsu® which satisfy the following con-
dition: for any mixed second-player strategy 1" == V (¢, z) there exists a motion
x [t] == & lt; v, w, Ur, V] for which the relation {f, z [t]} & K (c) holds for
Tt < min {7, 0 (z[-1)}.

Theorem 3.2, Differential Game 1.2 whose payoff is given by Eq. (1.4) has its
value given by
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[o]

¢’ = inf {¢; x, = WP (1, T; &)

Here the mixed first-player strategy U¢) = U (t, z) extremal to the system of
sets W (¢, T'; ¢ °) (¢, << t << T) guarantees completion of the game with a payoff
satisfying the inequality y << c,,f’ ; in other words, [/(¢) is a minimax strategy, For any
number ¢ <Z ¢,” there exists a € > 0 and a mixed second-player strategy V. — V,
(t x; ¢, £) such that the following relations are fulfilled for any motion £ [¢] = z [¢;

0, Tgs l Ty V ]

Pz, H)<T, p({t, z1t]}, N> ¢ for t,<t<V(zl-]; H(c))

Thus, the strategy V', guarantees completion of the game with a payoff which satisfies
the inequality Y 2> c.

We note that here too the strategy }/_ can be defined as extremal to the system of sets
W (t, Tsc, e) (ty < t << 7). Here the sets W®(t, T'; ¢, &) must be defined as
the collection of points w which satisfy the following requirement: whatever the mixed
first-player strategy U = U (¢, z), there exists a motion z [t] = z [t; T, w, U, Vq]
such that the conditions

G(i-l H)<T, p({t, zlt]}, N) > e for to, <<t <<V (z[-]; H(c))
are fulfilled,

4, Tinally, let us consider Differential Game 1,4, This differential game can be
replaced in familjar fashion by the equivalent differential game of the same form as
1.4 whose payoff does not contain the second term, To this end we need merely add the
new component £ to the phase coordinates of system (1.1); the variation of this new
component is defined by the equation

d& /dt = 'q) (t’ 1‘), g [[(1] = ( (‘4'1)

In the differential game equivalent to the initial Game Problem 1,4 the payoff is
given by the equation Y o= * (0, 2 [01, £ 0)) (4.2)

where ¢* (t, z, &) = @ (¢, 2) 4 & U == O (x [-]) is, as before, the instant of
arrival of the point p |¢] == {¢, x [t]} at the set V. From now on (to simplify our
expressions and notation) we shall assume that the required transformations have been
effected, and that the payoff of the gamme under consideration is of the form

T =q¢ W, M) @ =0([-N<T) (4.3)
- Let us introduce some of the symbols to be used
4 ( below, Let /[ (¢)and K (c) be closed sets in the vector
{tC/x }\// space p ; these sets are defined by the relations
010 -
]1((«) {p p{_”\ g (t, ) > c} )
= K(©) ={p:p= N e@a<cy (44
Fig, 1 By ('° (B) we denote the set of all numbers ¢ which

satisfy the following condition,
Condition 4,1, Whatever the mixed second-player strategy V = V (¢, x),
there exists a motion x [t] = a [#; ¢,. x4 Ur, V| for which the following relations
hold :
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Gl oo ({t w1y, Hic) =B =0 for fo< 1<V (2 [-1) (1.0)
Figure 1 shows the sets V. // (¢) and a motion & [¢] which satisfies condition (4.5).
The broken curve indicates the boundary of the set //? (¢).
We denote by ¢° the number defined by the equation
¢’=dnfe tor ¢ Y V() B3>0 (4.6)

The following statement is valid,

Theorem 4,1, If ¢ > (°, then there exists a [} > 0 and a mixed first-player
strategy U/ == U, ({, r; c. ) such that the following conditions hold for any motion
xltl - x it by wge Ly Vols

G (a2l ) T, o ({6 a Y, 1 (e) =P for ty<l <" U (x[-]) (4.7)

i.e, the strategy {’,ensures completion of the game with a payoff satisfying the inequal-
ity Y <Cc¢. On the other hand, if ¢ < ¢°, then for any arbitrarily small f > 0 there

exists a mixed second-player strategy V, = Vg (f, x; ¢, B) which ensures fulfillment
of at least one of the following two relations:
p (4, 21t]). Ny >0 for t=It, Tl (4.8)

min o ({t. 21t1). H (¢)) << P for t, <t <"D (x[-])

for any motion x [¢] == 2 [t; ¢y, o Uz, Vil

Procf. Let ¢ > ¢°. By the definition of the number ¢° this inequality implies the
existence of a § > 0 and of a ¢* from the set (° (B) such that the inequality ¢ > ¢*
is fulfilled, Let us introduce the system of sets WW (v, T; ¢*, B) (to << T << 7). We define
the systemn of sets W (1, T; c*, B) as the collection of all points w for which the follow-
ing condition holds: for any mixed second~player strategy V == 1" (¢, z) there exists a
motion ' z [t] = z [¢; T, w, Uy, V] which satisfies the relations

Vi lh<<T, pdtzlt] He*)=p for 1<t <O (=l-])

Since the number c* belongs to the set C° (B), the definitions of the sets ¢° () and
W (1, T; ¢*, B) imply the validity of the inclusion

e WY, T; c*, B) (4.9)

Now let us define Uo = Uy (¢, z; ¢, B) as the strategy extremal to the system of sets
W, T ¢*, B) , Fulfillment of relations (4, 7) then follows from Theorem 1.1 where
we set M == N, D == {p: p (p, ¥ (c*)) > B}, and also from relation (4, 9) and the inequa-
lity ¢ > ¢*. The validity of the inequality y < ¢ follows directly from the definition
of payoff (4, 3) and of the set I/ (=) (4,4), The first statement of Theorem 4,1 has been
proved,

Now let ¢ < ¢”, Then, whatever the number B > 0+, the number » does not belong
to the set ¢ (B). This means (by the definition of the set C° (8)) that there exists a stra-
tegy V,which ensures fulfiliment of one of the relations of (4, 8), This means that the
second statement of Theorem 4,1 is also valid,

Thus, Theorem 4,1 provides an estimate of the game payoff which the first player
can ensure on his own behalf by choosing mixed strategies U, — U, (£, x; ¢, B)
extremal to the systemn of sets W (¢, T; ¢, B). Let us now obtain a similar estimate
of the guaranteed payoff for the second player,

we denote by C, (B) the set of numbers ¢ for which the following condition is ful-
filled.
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Condition 4,2. Whatever the mixed first-player strategy U = U (¢, z), there
exists a motion z{t] = z [#; ¢, z,, U, V| which satisfies the following relation:

p({t, zltl}, K()) B> 0 for t,<t < min {T, 9 (z[-1}
Now let ¢; be a number defined by the equation

co=>sup ¢ for c<= ) Co(B) B>0 (4.10)

Theorem 4,2, If ¢ <¢Cq» then there exists a § > 0 and a mixed second~-player
strategy V, = Vg (¢, ; ¢, P) such that the following relation is fulfilled for any
motion {t] == X [i; to, e UT, Vo}:

p{t, z[t]}, K(0)) =B for tp<t<< min {T, ¢ (z[-1)} (4.11)

In other words, the strategy V, ensures that the second player completes the game with
a payoff which satisfies the inequality y > ¢. On the other hand, if ¢ >> ¢g, then for
any positive number § > Q there exists a mixed first-player strategy U, = U, (¢,
x; ¢, P) which ensures fulfillment of the following condition for any motion z [¢] =
=z [t; ty x4, Uy, Vol

minp ({t, z ¢}, K (D <B for t<<t<min {7, 9 (-]} (412)

The proof of this theorem is similar to the proof of Theorem 4,1. The sole difference
is that instead of the system of sets W (1, T; ¢, B) (to < T << 7) we must introduce the
sets Wfk"') (t, T; ¢, B) defined as the collections of all points w, which satisfy the following
requirement : for any mixed first-player strategy U/ == U {f, z) there exists a motion
z [t} = z l&; 1w, U, Vp] for which the condition

p({t,z ]l K(e) 2B for T<t K min {T,0 (= [-1)}

holds,
Since ¢ < ¢o, there exists a § > 0 such that

e W By, T; ¢, B) {4.13)

Assuming that Vo = Vy (¢, z; ¢, B) is a second-player strategy extremal to the system
of sets W:U (t, T; e B) (to <t << 1) , we find that the validity of (4, 11) follows from
condition (4,13) and Theorem 1,2, where we set M == N, D = {p: p(p, K{c)) = B}

For any § > 0 the number ¢ does not belong to the set Co (B) if ¢ > co, so that the
second statement of Theorem 4,2 follows directly from the definition of the sets Co (B).

Thus, if the numbers ¢® and ¢, are defined by relations (4. 6), (4.10), then the first
player can ensure that he will complete the game with a payoff satisfying the inequality
Y << ¢ - ¢, and the second player can ensure fulfillment of the inequality y 2> ¢, —¢,
where ¢ > () is arbitrarily small, It is easy to see that the numbers ¢° and ¢, are related
by the inequality ¢, <C ¢°. We can show that the numbers ¢, and ¢° coincide under
certain additional conditions, Specifically, as we know from Sect, 2, the differential
guidance game has value; in addition, as is shown below, this game can be reduced to
a differential game in which the payoff is defined by Eq, (4, 3). It is therefore interest-
ing to determine the additional conditions which are fulfilled for this problem and ensure
that the numbers ¢, and ¢” coincide, We state such a condition and then prove it for the
differential guidance game,

Condition 4,3, Forany motion z [{] = z [£; 4, x,, Ur, Vrl, fulfillment
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of the relation {fq, z [f,1} ¢ K (c), where f, <C 7', the following condition must
be satisfied:

{P[-D. 210 1D} &= K (¢ (4. 1%
In addition, for any o > O there existsa B = 0 such that when
Gl 20 EI-MN e, V)0 (4.19)
we have the inequality
p({tizltl}, Hic+a)=Ph for t,<t<<O(z[]) (4.16)

for any motion z [t] = z |£; £y, x4, U7z, V] satisfying relation (4, 15),

Theorem 4,3, If Condition 4,3 is fulfilled, then ¢, == ¢°.

Proof, [et ussuppose that this is not the case, Let the numbers ¢ and a satisfy the
inequalities co < ¢ < ¢ -+ a < ¢°. By virtue of the second statement of Theorem 4, 2,
for any arbitrarily small § > 0 we have

Ot z [t K () <<B for 20 <ty S min [T, (z -1}

for any motion =z {t] == « [t; tw, o, U, V], where ¥ = ¥ (1, £) is some mixed second-
player strategy, Choosing from amony the motions = [t] = x [ tw, xo, {7, V) corre=~
sponding to distinct values of the parameter § > 0 some sequence which converges as

8 — 0 whose limit we denote by z* [t] {({u <7 ¢ ~C 1), we find that {¢*, z* [1*]} €K (o),
where £* is some number from the interval [#, 7). We note that «* [t] {tv <Tt < T) coin-
cides with one of the motions « [£; fa, »0, Uy, V] and by virtue of condition (4. 14) we
have the inclusion {§ («* |- ), 2* [ (¥ D]} &€ K (¢), which by virtue of (4.15), (4.16)
implies the relation

p ({2 e ba)y B >0 for tpslt (02X DS T

Since ¥ - V (f, #) is an arhitrary mixed second~player sirategy. and since here the
number B > 0 does not depend on ¥, we can state that the nuinber ¢ -i- « belongs to
the set C° (B), so that ¢ - @ - ¢*; but this contradicts the assumption that ¢ - o < ",
This contradiction proves the validity of Theoremn 4, 3,

Setting @ == 0, ¥ == 1 in (1.6). we obtain a differential guidance game which dif-
fers from the differential game considered in Sect, 2 in the fact that it is not subject to
the phase restriction {t, x (1]} = (. However, this distinction makes no difference in
the discussion to follow, (CGame Problem 1.4 can be stated in such a way as to require
fulfillment of the restriction p |7} € G from the first player; Problems 1,1 and 1,4

the present section), let us show that Condition 4, 3 is fulfilled for ¢ == 0, W = 1.

i,e, for the guidance problem,
In fact, the sets // {¢) and A (¢), which must be constructed in the (7 - 2)-dimen-
tional vector space {1, u, E}, are defined by the conditions

H()={p={t,x)e& N, E=t—ty>=c}, K «{p ~{t a}e N,

restriction p ¢} ¢= 7 does not significantly alter the proofs of the statements made in

It is clear that the condition {fy, o [t,], & 14,1} < A (¢) implies the validity of
the inclusion {{t (z [-1), = [0 (2 |- )], § [ (|- D1} €2 A (¢), since & (z [-1) <= 14
It is equally easy to verify the validity of inequality (4, 1s) if condition (4.15) is ful-
filled, Thus, Condition 4,2 holds in this case,
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Theorem 4, 3 implies that Differential Game 1,4 has a value, This fact, which we
established in Sect, 2, was inferred from the material presented in this section, We note
that Condition 4, 3 is valid in the general case, i, e, for Differential Game 1,4 in which
@ (t, z) = 0, ¥ (¢, z) > 0 for all {£, z}. In addition, Condition 4, 3 is also fulfilled
for Differential Game 1,4 when its instant of termination has been specified, i, e, in
relation (1.6) defining the payoff ¢ == T = const. Thus, Differential Game 1,4 with
a fixed instant of termination also has value, The material of the present section clearly
implies that the optimal strategies in this game are the player strategies extremal to the
appropriately defined absorption sets W (¢, T) and Wf:) (t, T) (¢p <t << 7).

In conclusion, we cite an example in which the numbers ¢° (4.6) and ¢, (4.10) do not
coincide,

Let the system motion be described by the equations

dz/dt = by (t)v, z; [0] =0
dzy/dt = by (1) u, z, [0] =0

where I (t) and b, () are some continuous functions satisfying the conditions
by () >0 for 0 <t<1, b(ty =10 for t>1
by (1) = 0 for O <Ct<1, by 1) >0 for t>1
The controls « and v are subject to the restrictions

0<u<t, —1<r <0

The set .V consists of two points, namely

Ay =t =1, 1, =0, , =0}, Ay == {t =2, 7, = 0, z, = 0}
the two straight lines
Ly == {t =3, z, = 0}, L,={t =4, z,=10}
and the plane
T ={p={t, x,, o} : t = 5}

The function ¢ (¢, x;, 73} on the set N is defined as follows: at the point 4, and at
the straight line L, we set ¢ (¢, z,, 2,) = 0 ; at the point A,, at the straight line Z,,
and at the plane I' we set ¢ (¢, z;, o) = 1.

The definitions of the numbers ¢° (4. 6) and ¢, (4,10) imply directly that in this exam-
ple c® =1,c0=0.
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